
Motivation Approach Rules Validating mappings Discussion and Conclusions

Conceptual Model Interoperability: a
Metamodel-driven Approach

Pablo Rubén Fillottrani1,2 and C. Maria Keet3

1 Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional
del Sur, Bah́ıa Blanca, Argentina, prf@cs.uns.edu.ar

2 Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires, Argentina
3 Department of Computer Science, University of Cape Town, South Africa,

mkeet@cs.uct.ac.za

RuleML’14, Prague, August 18-20, 2014

1 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Outline

1 Motivation

2 Approach

3 Rules

4 Validating mappings

5 Discussion and Conclusions

2 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Outline

1 Motivation

2 Approach

3 Rules

4 Validating mappings

5 Discussion and Conclusions

3 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Introduction

Need for sharing data across information systems

Interoperability at the level of conceptual models is a key

Linking, converting, and integrating conceptual models
represented in different modelling languages

E.g.: database is designed with EER, the application layer
that uses the database is specified in UML, and the business
rules in ORM

4 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Related works

One-off unidirectional algorithms to transform a language;
e.g., ORM→UML [Bollen, 2002]

Multi-language approaches,

linking each model to a graph [Boyd & McBrien, 2005]
description logic language unifier
[Calvanese et al, 1999, Keet, 2012]
transformations mediated by a dictionary of common terms
[Atzeni et al, 2012], or metamodel [Venable & Grundy, 1995]

Problems: only partial solutions:

omit several constructs (e.g., weak entity types, roles) or
modify the language (e.g., by removing datatypes from UML)
imprecise ‘equivalence’ mappings, or
the algorithms are not available

Overall, there is very limited interoperability of conceptual
data models in praxis

5 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Outline

1 Motivation

2 Approach

3 Rules

4 Validating mappings

5 Discussion and Conclusions

6 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Ingredients

Assert a link between two entities in different models and
evaluate automatically whether it is a valid assertion and what
it does entail

Need to know what type of entities they are, whether they are
the same, and if not, whether one can be transformed into the
other for that particular selection.

First step: how to transform that entity from one model into
another

Second: validate inter-model assertion

7 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Overview transforming entities

- take an entity, follow the sequence of
mandatory constraints of the metamodel

to transform using the algorithms
containing the rules. repeat;

- process the remainder;
- ask user input for each approximation;

- record which are 1:1, remodelled,
approximated, lost;

input model in
language X

vocabulary containing
a terminology comparison

between terms used in
the languages

algorithms

output model
in language Y

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

formalised
metamodel

log

8 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Overview validating inter-model assertions

- classify entities of M1 and M2 into MM entities;
- process mapping assertions using the

transformation algorithms and compare output
with element in M2;

input model M1
and M2 in language

X and Y, resp.

algorithms

output model M12
or NO

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

input inter-model
assertion

log

?

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

formalised
metamodel

vocabulary with
lists which entities should
be mapped, transformed,

approximated, non-
mappable

9 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Outline

1 Motivation

2 Approach

3 Rules

4 Validating mappings

5 Discussion and Conclusions

10 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Design

Rules between languages vs. ‘through’ the metamodel

Metamodel-mediated:

reduces amount of mappings
extensibility
maintainability
use the constraints in the metamodel to induce firing the rules

Static structural components:
[Keet & Fillottrani, 2013a, Keet & Fillottrani, 2013b]

11 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

1:1 mapping rules and the metamodel (selection)

(R1) Association
UML to MM

=======⇒ Relationship

in:
Association(AssociationEnd : Class, AssociationEnd : Class)

out: AssociationEnd→ Role // i.e., using (Ro1)

out: Association→ Relationship

out: Class→ Object Type // i.e., using (O1)

out: Relationship(Role:Object type, Role:Object Type)

(1R) Relationship
MM to UML

=======⇒ Association

in: Relationship(Role:Object type, Role:Object Type)

out: Role → AssociationEnd // i.e., using (1Ro)

out: Relationship → Association

out: Object Type → Class // i.e., using (1O)

out:
Association(AssociationEnd : Class, AssociationEnd : Class)

(xRx) Likewise for the other 1:1 mappings of Fact type and

Relationship, with (1R)
MM o UML

======⇒; (R2)
ORM to MM

=======⇒; (2R)
MM to ORM

=======⇒; (R3)
EER to MM

======⇒; (3R)
MM to EER

======⇒.
12 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Generating and mapping

GenOT Class
UML to ORM

=======⇒ Entity type

in: C

out: (O1)

out: (2O) // i.e., an ORM EntityType named C

MapR Association
UML to ER

======⇒ Relationship

in: A(ae1 : C1, ae2 : C2)

out: (R1)

out: (3R)

out: match pattern out(3R) with R(rc1 : E1, rc2 : E2)

13 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Transformations (selection)

(VT) Value type

(V1) Value type
ORM to MM7−−−−−−−→ Value type

in: ValueType ∧ mapped to(ValueType, DataType)
out: (D1)
out: mapped to→ mapped to
out: ValueType→ Value type
out: ValueType ∧ mapped to(Value type, Data type)

(1V) Value type
ORM to MM7−−−−−−−→ Value type

.... // steps in (V1) in reverse order

(Att-VT) Attribute and Value type conversions

(VT-to-Att) Value type
MM7−−→ Attribute

in: Value type ∧ mapped to(Value type, Data type)
out: (D1)
out: Object type
out: ValueType → Attribute
out: Attribute(Object type, Data type)

14 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Mapping (selection)

MapVTAtt Value type
ORM to UML7−−−−−−−→ Attribute

in: V ∧ mapped to(V, D)

out: (V1)

out: (VT-to-Att)

out: (1A) // i.e., a UML Class Diagram with A(C, D)

out: match pattern out(1A) with attribute declaration in
the UML diagram

15 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Approximations (selection)

(Att) Attribute

(Ae1) Attribute EER to MM Attribute
in: Attribute(Class,)

out: (O1)
out: → choose a DataType
out: Attribute→ Attribute
out: Attribute(Object type, Data type)

(1Ae) Attribute MM to EER Attribute
in: Attribute(Object type, Data type)

out: (O1)
out: Attribute → Attribute

out: DataType →
out: Attribute(Class,)

16 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Mapping

MapSID ORM reference scheme ORM to EER EER single attribute
identifier

in:
FT(re : E1, rv : V) ∧ mapped to(V, D) ∧ M ∧ C(mic = 1, mac = 1)

out: (O2) // ORM entity type into MM object type

out: (V1) // ORM value type into MM value type

out: (M2) // ORM mandatory into MM mandatory

out: (C2) // ORM cardinality into MM cardinality

out: (VT-to-Att) // MM conversion value type to attribute

out: (3O) // MM object type into entity type E of EER

out: (1Ae) // generate EER Diagram attribute: A(E,)

out: (3M) // MM mandatory into mandatory of EER

out: (3C) // MM cardinality into cardinality of EER

out: match pattern out(1Ae,3M,3C) with single identifier
declaration in the EER diagram

17 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Outline

1 Motivation

2 Approach

3 Rules

4 Validating mappings

5 Discussion and Conclusions

18 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Example: UML, ORM, relationships

Example: an inter-model assertion between a UML binary
association R1 and an ORM fact type R2

Classify the entities in term of the metamodel entities

Consider the 1:1 mappings, transformations, approximations,
non-mappable entities.

Then choose a direction for mapping validation, and the rules
and formalised metamodel

19 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

5-step procedure

Step 1 Vocabulary: association and fact type correspond to
Relationship in the metamodel, and thus enjoy a 1:1 mapping.
Ruleset: R1 from UML to the metamodel and 2R to OMR’s
fact type.

Step 2 First ‘knock-on’ effects: R1 and 2R refer to Role and Object
type of the metamodel.
Metamodel states that there must be at least 2 contains
relations from Relationship to Role.
Cause the role-rules to be evaluated, with Ro1 of R1’s two
association ends and 2Ro for ORM’s roles

20 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

5-step procedure

Step 1 Vocabulary: association and fact type correspond to
Relationship in the metamodel, and thus enjoy a 1:1 mapping.
Ruleset: R1 from UML to the metamodel and 2R to OMR’s
fact type.

Step 2 First ‘knock-on’ effects: R1 and 2R refer to Role and Object
type of the metamodel.
Metamodel states that there must be at least 2 contains
relations from Relationship to Role.
Cause the role-rules to be evaluated, with Ro1 of R1’s two
association ends and 2Ro for ORM’s roles

21 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Small section of the metamodel, graphically

RoleRelationship Entity typerole
playing

0..*
playslinked to

1

0..1of

2..*1
contains

Object type

Nested object
type

1

0..1
reified as

objectifies

Cardinality constraint
MinimumCardinality:Integer
MaximumCardinality:Integer

22 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Formalised metamodel (section), highlighted for step 2

∀(x , y)(Contains(x , y) → Relationship(x) ∧ Role(y))
∀(x)∃≥2y(Contains(x , y))
∀(x)(Role(x) → ∃(y)(Contains(y , x)))
∀(x , y , z)(Contains(x , y) ∧ Contains(z, y) → (x = z))
∀(x , y , z)(RolePlaying(x , y , z) → Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x) → ∃(y , z)(RolePlaying(x , y , z)))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(x , v ,w) → (y = v) ∧ (z = w))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(v , y ,w) → (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x) → ∃(y)(MinimumCardinality(x , y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x) → ∃(y)(MaximumCardinality(x , y) ∧ Integer(y)))
∀(x , y)(Identifies(x , y) → (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x) → ∃(y)(Identifies(x , y)))
∀(x , y , z)((Identifies(x , y) ∧ Identifies(x , z)) → (y = z))
∀(x)(ObjectType(x) → ∃(y)(Identifies(y , x)))
∀(x , y , z)((DeclaredOn(x , y) ∧ DeclaredOn(x , z) ∧ IdentificationConstraint(x) ∧ (¬(y = z))) →

(ValueProperty(y) ↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x) → ∃(y)(DeclaredOn(x , y)))
∀(x , y)((DeclaredOn(x , y) ∧ SingleIdentification(x)) → (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x) → ∃(y)(DeclaredOn(x , y))
∀(x , y , z)((SingleIdentification(x) ∧ DeclaredOn(x , y) ∧ DeclaredOn(x , z)) → (y = z))

23 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

cont’d

Step 3 Metamodel: Role must participate in the relationship
rolePlaying, and it has a participating Object type and
optionally a Cardinality constraint.
Also 1:1 mappings

Step 4 The class participating in R1 causes its rules to be evaluated,
being an O1 to Object type and 2O to ORM’s entity type.

24 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

cont’d

Step 3 Metamodel: Role must participate in the relationship
rolePlaying, and it has a participating Object type and
optionally a Cardinality constraint.
Also 1:1 mappings

Step 4 The class participating in R1 causes its rules to be evaluated,
being an O1 to Object type and 2O to ORM’s entity type.

25 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Highlighted section for step 3

∀(x , y)(Contains(x , y) → Relationship(x) ∧ Role(y))
∀(x)∃≥2y(Contains(x , y))
∀(x)(Role(x) → ∃(y)(Contains(y , x)))
∀(x , y , z)(Contains(x , y) ∧ Contains(z, y) → (x = z))
∀(x , y , z)(RolePlaying(x , y , z) → Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x) → ∃(y , z)(RolePlaying(x , y , z)))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(x , v ,w) → (y = v) ∧ (z = w))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(v , y ,w) → (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x) → ∃(y)(MinimumCardinality(x , y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x) → ∃(y)(MaximumCardinality(x , y) ∧ Integer(y)))
∀(x , y)(Identifies(x , y) → (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x) → ∃(y)(Identifies(x , y)))
∀(x , y , z)((Identifies(x , y) ∧ Identifies(x , z)) → (y = z))
∀(x)(ObjectType(x) → ∃(y)(Identifies(y , x)))
∀(x , y , z)((DeclaredOn(x , y) ∧ DeclaredOn(x , z) ∧ IdentificationConstraint(x) ∧ (¬(y = z))) →

(ValueProperty(y) ↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x) → ∃(y)(DeclaredOn(x , y)))
∀(x , y)((DeclaredOn(x , y) ∧ SingleIdentification(x)) → (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x) → ∃(y)(DeclaredOn(x , y))
∀(x , y , z)((SingleIdentification(x) ∧ DeclaredOn(x , y) ∧ DeclaredOn(x , z)) → (y = z))

26 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

cont’d

Step 5 Each Object type must have at least one Identification
constraint.
and involving one or more attributes or value types.
If it is a Single identification, then a rule similar to MapSID is
called and executed (which, in turn, calls the Att-to-VT rule
and the use of Data type)

27 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Small section of the metamodel, graphically

Object typeValue
property

Attributive
property

Attribute

Value type Weak object
type

Identification
constraint

Internal
identification

External
identification

Single
identification

identifies

1..* identified by

1

participates in
declared as

0..1
0..1

1

1

{xor}

0..*0..*

0..*

0..*

1..*

1identifies

identified by

{disjoint, complete}

participates in

{xor}

declared on

Qualified
identification

0..*
Weak

identification

{disjoint}

Qualified
relationship

1

participates
in

partially
identifies

Relationship

declared on

declared on

declared
on

* A Weak identification is a combination of one or more Attributive property of the Weak object type it identifies
 together with the Identification constraint of the Object type it has a Relationship with
 and this Object type is disjoint with the Weak object type.
* The Single identification has a Mandatory constraint on the participating Role and the Relationship that
 Role is contained in has a 1:1 Cardinality constraint declared on it.
* Qualified identification and External identification are declared on only Attributive property.
* A Qualified relationship participates in a Qualified identification only if the Cardinality constraint is 1.

1

0..*
has strong

declared on
1..*

0..*
participates

in

28 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Formalised metamodel (section), highlighted for step 5

∀(x , y)(Contains(x , y) → Relationship(x) ∧ Role(y))
∀(x)∃≥2y(Contains(x , y))
∀(x)(Role(x) → ∃(y)(Contains(y , x)))
∀(x , y , z)(Contains(x , y) ∧ Contains(z, y) → (x = z))
∀(x , y , z)(RolePlaying(x , y , z) → Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x) → ∃(y , z)(RolePlaying(x , y , z)))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(x , v ,w) → (y = v) ∧ (z = w))
∀(x , y , z, v ,w)(RolePlaying(x , y , z) ∧ RolePlaying(v , y ,w) → (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x) → ∃(y)(MinimumCardinality(x , y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x) → ∃(y)(MaximumCardinality(x , y) ∧ Integer(y)))
∀(x , y)(Identifies(x , y) → (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x) → ∃(y)(Identifies(x , y)))
∀(x , y , z)((Identifies(x , y) ∧ Identifies(x , z)) → (y = z))
∀(x)(ObjectType(x) → ∃(y)(Identifies(y , x)))
∀(x , y , z)((DeclaredOn(x , y) ∧ DeclaredOn(x , z) ∧ IdentificationConstraint(x) ∧ (¬(y = z))) →

(ValueProperty(y) ↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x) → ∃(y)(DeclaredOn(x , y)))
∀(x , y)((DeclaredOn(x , y) ∧ SingleIdentification(x)) → (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x) → ∃(y)(DeclaredOn(x , y))
∀(x , y , z)((SingleIdentification(x) ∧ DeclaredOn(x , y) ∧ DeclaredOn(x , z)) → (y = z))

29 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Outline

1 Motivation

2 Approach

3 Rules

4 Validating mappings

5 Discussion and Conclusions

30 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Considerations

Upfront ‘investment’, notably in designing and formalising the
metamodel

Extra work pays off:

increased coverage of features
higher precision of mappings
approximations are explicit
coordination of rules thanks to constraints in metamodel (cf.
plain dictionary)

Rules usable for both transformations and validation

Yet to be implemented and evaluated with actual models

31 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

Conclusions

Metamodel-driven approach for model transformations and
inter-model assertions where the models are represented in
different languages: static structural, components of ER,
EER, UML v2.4.1, ORM, and ORM2

Uses formalised metamodel to direct a sequence of the
language transformations

Set of mapping, transformation, and approximation rules to
carry it out

Transformations (conversions) and validation of inter-model
mappings

32 / 34

Motivation Approach Rules Validating mappings Discussion and Conclusions

References I

Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and translation signatures in a

multi-model framework. Annals of Mathematics and Artificial Intelligence 63, 1–29 (2012)

Bollen, P.W.L.: A formal ORM-to-UML mapping algorithm (2002),

http://arno.unimaas.nl/show.cgi?fid=46, research memo RM 02/016, Faculty of Economics and
Business Administration, University of Maastricht

Boyd, M., McBrien, P.: Comparing and transforming between data models via an intermediate hypergraph

data model. J. on Data Semantics IV, 69–109 (2005)

Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. Journal of Artificial

Intelligence Research 11, 199–240 (1999)

Keet, C.M.: Ontology-driven formal conceptual data modeling for biological data analysis. In: Elloumi, M.,

Zomaya, A.Y. (eds.) Biological Knowledge Discovery Handbook: Preprocessing, Mining and Postprocessing
of Biological Data, chap. 6, pp. 129–154. Wiley (2013)

Keet, C.M., Fillottrani, P.R.: Structural entities of an ontology-driven unifying metamodel for UML, EER,

and ORM2. In: Proc. of MEDI’13. LNCS, vol. 8216, pp. 188–199. Springer (2013), sept. 25-27, 2013,
Amantea, Calabria, Italy

Keet, C.M., Fillottrani, P.R.: Toward an ontology-driven unifying metamodel for UML class diagrams, EER,

and ORM2. In: Proc. of ER’13. LNCS, vol. 8217, pp. 313–326. Springer (2013), 11-13 Nov., 2013, Hong
Kong

Venable, J., Grundy, J.: Integrating and supporting Entity Relationship and Object Role Models. In: Proc.

of ER’95. LNCS, vol. 1021, pp. 318–328. Springer (1995)

33 / 34

http://arno.unimaas.nl/show.cgi?fid=46

Motivation Approach Rules Validating mappings Discussion and Conclusions

Thank you!

Questions?

34 / 34

	Motivation
	Approach
	Rules
	Validating mappings
	Discussion and Conclusions

