Conceptual Model Interoperability: a
Metamodel-driven Approach

Pablo Rubén Fillottrani’2 and C. Maria Keet3

1 Departamento de Ciencias e Ingenieria de la Computacién, Universidad Nacional
del Sur, Bahia Blanca, Argentina, prf@cs.uns.edu.ar
2 Comisién de Investigaciones Cientificas, Provincia de Buenos Aires, Argentina
3 Department of Computer Science, University of Cape Town, South Africa,
mkeet@cs.uct.ac.za

RuleML’14, Prague, August 18-20, 2014

1/34

Outline

© Motivation

e Approach

© Rules

e Validating mappings

© Discussion and Conclusions

2/34

Motivation

Outline

@ Motivation

3/34

Motivation

Introduction

Need for sharing data across information systems

Interoperability at the level of conceptual models is a key

Linking, converting, and integrating conceptual models
represented in different modelling languages

E.g.: database is designed with EER, the application layer
that uses the database is specified in UML, and the business
rules in ORM

4/34

Motivation

Related works

@ One-off unidirectional algorithms to transform a language;
e.g., ORM—UML [Bollen, 2002]
o Multi-language approaches,
e linking each model to a graph [Boyd & McBrien, 2005]
e description logic language unifier
[Calvanese et al, 1999, Keet, 2012]
e transformations mediated by a dictionary of common terms
[Atzeni et al, 2012], or metamodel [Venable & Grundy, 1995]
@ Problems: only partial solutions:
e omit several constructs (e.g., weak entity types, roles) or
modify the language (e.g., by removing datatypes from UML)
e imprecise ‘equivalence’ mappings, or
e the algorithms are not available
@ Overall, there is very limited interoperability of conceptual
data models in praxis

5/34

Approach

Outline

© Approach

6/34

Approach

Ingredients

@ Assert a link between two entities in different models and
evaluate automatically whether it is a valid assertion and what
it does entail

@ Need to know what type of entities they are, whether they are
the same, and if not, whether one can be transformed into the
other for that particular selection.

@ First step: how to transform that entity from one model into
another

@ Second: validate inter-model assertion

7/34

Approach

Overview transforming entities

Metamodel | UML EER ORM2

V(x)(Relationship(x) — Entity(x))

Flower

o -
gj{;‘jri{r'l’;% V(x)(~(Datatype(x) A Qualifier(x)))

formalised
input model in
language X

metamodel
- take an entity, follow the sequence of
mandatory constraints of the metamodel
to transform using the algorithms
containing the rules. repeat;
- process the remainder;
- ask user input for each approximation;
- record which are 1:1, remodelled,

approximated, lost;
. .

1:1 mappings
name | \ , . \ ’
- - UML class ‘Flower’ -> ORM Entity Type ‘Flower
——— Transformations
colour | UML attribute ‘colour’ -> ORM Value Type ‘colour’

has 8/34

Relationship | Association | Relationship | Facttype

Qualifier Qualifier -]]

vocabulary containing

a terminology comparison
between terms used in

the languages

Approach

Overview validating inter-model assertions

—— 1:1 mappings
name | UML class : ORM Entity Type
. - Transformations
? \ colour | UML attribute : ORM Value type
Approximation
Flower . . . -
V(x)(Relationship(x) — Entity(s~ * ~
No mappings

name:string
colour:string

ORM role equality : UML x
V(x)(—(Datatype(x) A Qualifier(x vocabulary wit
. am—— lists which entities should
metamodel be mappe_d, transformed,

approximated, non-
mappable

input model M1
and M2 in language
X and, resp.

- classify entities of M1 and M2 into MM entities;
- process mapping assertions using the
transformation algorithms and compare output
with element in M2;

Flower
name:string
colour:string

Inter-model assertions
UML class ‘Flower’: ORM Entity Type ‘Flower’

9/34

Rules

Outline

e Rules

10/34

Rules

@ Rules between languages vs. ‘through’ the metamodel

@ Metamodel-mediated:

reduces amount of mappings

extensibility

maintainability

use the constraints in the metamodel to induce firing the rules

@ Static structural components:
[Keet & Fillottrani, 2013a, Keet & Fillottrani, 2013b]

11/34

Rules

1:1 mapping rules and the metamodel (selection)

(R1)

(1R)

(xRx)

Association == MM, Relationship

in:

Association(AssociationEnd : Class, AssociationEnd : Class)
out: AssociationEnd — Role // i.e., using (Rol)
out: Association — Relationship
out: Class — Object Type // i.e., using (O1)
out: Relationship(Role:Object type, Role:Object Type)

. . MM to UML s
Relationship =—————=> Association

in: Relationship(Role:Object type, Role:Object Type)

out: Role — AssociationEnd // i.e., using (1Ro)
out: Relationship — Association

out: Object Type — Class // i.e., using (10)
out:

Association(AssociationEnd : Class, AssociationEnd : Class)
Likewise for the other 1:1 mappings of Fact type and

Relationship, with (1R) ZmteWMb . (Rp) 2RM MM . (HR)
MM to ORM ; (R3) EER to MM ; (3R) MM to EER .

12/34

Rules

Generating and mapping

UML to ORM

GenOT Class =—————= Entity type
in: C
out: (01)
out: (20) // i.e., an ORM EntityType named C

... UMLto ER . .
MapR Association ML IR, Relationship

in: A(aes : Ci,aes : C2)
out: (R1)
out: (3R)
out: match pattern out(3R) with R(rcy : Eq,res @ Es)

13/34

Rules

Transformations (selection)

(VT) Value type

(V1) Value type (ORM o MM \/alue type

in: ValueType A mapped_to(ValueType, DataType)
out: (D1)
out: mapped_to — mapped_to
out: ValueType — Value type

out: ValueType A mapped_to(Value type, Data type)

(1V) Value type (ORM o MM, y/a e type

// steps in (V1) in reverse order
(Att-VT) Attribute and Value type conversions

(VT-to-Att) Value type MM Attribute
in: Value type A mapped_to(Value type, Data type)
out: (D1)
out: Object type
out: ValueType — Attribute
out: Attribute(Object type, Data type)

14/34

Rules

Mapping (selection)

MapVTAtt Value type 22 WML At ribute

in: VA mapped_to(V,D)
out: (V1)
out: (VT-to-Att)
out: (1A) // i.e., a UML Class Diagram with A(C,D)

out: match pattern out(1A) with attribute declaration in
the UML diagram

15/34

Rules

Approximations (selection)

(Att) Attribute

(Ael) Attribute ~~ggr to Mm Attribute
in: Attribute(Class,_.)
out: (01)
out: __ — choose a DataType
out: Attribute — Attribute
out: Attribute(Object type, Data type)
(1Ae) Attribute ~>mm to EEr Attribute
in: Attribute(Object type, Data type)
out: (01)
out: Attribute — Attribute
out: DataType — __
out: Attribute(Class,_)

16/34

Mapping

Rules

MapSID ORM reference scheme ~~orm to eer EER single attribute
identifier

in:

FT(re : Ei, Ty : V) Amapped_to(V,D) AMA C(mic = 1,mac = 1)

out:
out:
out:
out:
out:
out:
out:
out:
out:

out:

(02) // ORM entity type into MM object type
(V1) // ORM value type into MM value type
(M2) // ORM mandatory into MM mandatory
(C2) // ORM cardinality into MM cardinality
(VT-to-Att) // MM conversion value type to attribute
(30) // MM object type into entity type E of EER
(1Ae) // generate EER Diagram attribute: A(E, __)
(3M) // MM mandatory into mandatory of EER
(30) // MM cardinality into cardinality of EER
match pattern out(1Ae,3M,3C) with single identifier

declaration in the EER diagram

17/34

Validating mappings

Outline

o Validating mappings

18/34

Validating mappings

Example: UML, ORM, relationships

@ Example: an inter-model assertion between a UML binary
association R; and an ORM fact type R»

@ Classify the entities in term of the metamodel entities

o Consider the 1:1 mappings, transformations, approximations,
non-mappable entities.

@ Then choose a direction for mapping validation, and the rules
and formalised metamodel

19/34

Validating mappings

5-step procedure

Step 1 Vocabulary: association and fact type correspond to
Relationship in the metamodel, and thus enjoy a 1:1 mapping.

Ruleset: R1 from UML to the metamodel and 2R to OMR’s
fact type.

20/34

Validating mappings

5-step

Step 1

Step 2

procedure

Vocabulary: association and fact type correspond to
Relationship in the metamodel, and thus enjoy a 1:1 mapping.
Ruleset: R1 from UML to the metamodel and 2R to OMR's
fact type.

First ‘knock-on" effects: R1 and 2R refer to Role and Object
type of the metamodel.

Metamodel states that there must be at least 2 contains
relations from Relationship to Role.

Cause the role-rules to be evaluated, with Rol of Ry's two
association ends and 2Ro for ORM's roles

21/34

Validating mappings

Small section of the metamodel, graphically

Relationship ‘ﬁ?

Role

1| objectifies

Cardinality constraint

MinimumCardinality:Integer
MaximumCardinality:Integer

reified as

Entity type

T

Object type

4

0.1

Nested object
type

22/34

Validating mappings

Formalised metamodel (section), highlighted for step 2

V(x, y)(Contains(x, y) — Relationship(x) A Role(y))

V(x)322y(Contains(x, y))

V(x)(Role(x) — 3(y)(Contains(y, x)))

V(x, y,z)(Contains(x, y) A Contains(z,y) — (x = z))

V(x,y,z)(RolePlaying(x, y, z) — Role(x) A CardinalityConstraint(y) A EntityType(z))

V(x)(Role(x) — 3(y, z)(RolePlaying(x, y, z)))

V(x,y,z,v,w)(RolePlaying(x,y, z) A RolePlaying(x,v,w) — (y = v) A (z = w))

V(x,y,z,v,w)(RolePlaying(x,y, z) A RolePlaying(v,y,w) = (x = v) A (z = w))

V(x)(CardinalityConstraint(x) — 3(y)(MinimumCardinality(x,y) A Integer(y)))

V(x)(CardinalityConstraint(x) — J(y)(MaximumCardinality(x,y) A Integer(y)))

V(x, y)(Identifies(x,y) — (IdentificationConstraint(x) A ObjectType(y)))

V(x)(IdentificationConstraint(x) — J(y)(Identifies(x,y)))

V(x,y,z)((Identifies(x,y) A Identifies(x,z)) — (y = z))

V(x)(0bjectType(x) — 3(y)(Identifies(y, x)))

V(x, y,z)((DeclaredOn(x, y) A DeclaredOn(x, z) A IdentificationConstraint(x) A (—(y =
(ValueProperty(y) <> —AttributiveProperty(z)))

V(x)(IdentificationConstraint(x) — J(y)(DeclaredOn(x,y)))

V(x, y)((DeclaredOn(x,y) A SingleIdentification(x)) — (Attribute(y) V ValueType(y)

V(x)(SingleIdentification(x) — 3(y)(DeclaredOn(x,y))

V(x, y,z)((SingleIdentification(x) A DeclaredOn(x, y) A DeclaredOn(x,z)) — (y = z))

23/34

Validating mappings

Step 3 Metamodel: Role must participate in the relationship
rolePlaying, and it has a participating Object type and
optionally a Cardinality constraint.

Also 1:1 mappings

24 /34

Validating mappings

Step 3 Metamodel: Role must participate in the relationship
rolePlaying, and it has a participating Object type and
optionally a Cardinality constraint.

Also 1:1 mappings

Step 4 The class participating in Ry causes its rules to be evaluated,

being an O1 to Object type and 20 to ORM'’s entity type.

25/34

Validating mappings

Highlighted section for step 3

V(x, y)(Contains(x, y) — Relationship(x) A Role(y))

V(x)322y(Contains(x, y))

V(x)(Role(x) — 3(y)(Contains(y, x)))

V(x, y,z)(Contains(x, y) A Contains(z,y) — (x = z))

V(x,y,z)(RolePlaying(x, y,z) — Role(x) A CardinalityConstraint(y) A EntityType(z))

V(x)(Role(x) — 3(y, z)(RolePlaying(x, y, 2)))

V(x,y,z,v,w)(RolePlaying(x,y, z) A RolePlaying(x,v,w) — (y = v) A (z = w))

¥(x,y. 2, v, w)(RolePlaying(x,y, z) A RolePlaying(v, y, w) — (x = v) A (z = w))

V(x)(CardinalityConstraint(x) — 3(y)(MinimumCardinality(x,y) A Integer(y)))

V(x)(CardinalityConstraint(x) — J(y)(MaximumCardinality(x,y) A Integer(y)))

V(x, y)(Identifies(x,y) — (IdentificationConstraint(x) A ObjectType(y)))

V(x)(IdentificationConstraint(x) — J(y)(Identifies(x,y)))

V(x,y,z)((Identifies(x,y) A Identifies(x,z)) — (y = z))

V(x)(0bjectType(x) — 3(y)(Identifies(y, x)))

V(x, y,z)((DeclaredOn(x, y) A DeclaredOn(x, z) A IdentificationConstraint(x) A (—(y =
(ValueProperty(y) <> —AttributiveProperty(z)))

V(x)(IdentificationConstraint(x) — J(y)(DeclaredOn(x,y)))

V(x, y)((DeclaredOn(x,y) A SingleIdentification(x)) — (Attribute(y) V ValueType(y)

V(x)(SingleIdentification(x) — 3(y)(DeclaredOn(x,y))

V(x, y,z)((SingleIdentification(x) A DeclaredOn(x, y) A DeclaredOn(x,z)) — (y = z))

26 /34

Validating mappings

Step 5 Each Object type must have at least one Identification
constraint.
and involving one or more attributes or value types.
If it is a Single identification, then a rule similar to MapSID is
called and executed (which, in turn, calls the Att-to-VT rule
and the use of Data type)

27/34

Validating mappings

Small section of the metamodel, graphically

identifies] 1
?e:: jeredon participates in declareg o*ﬁ| px)a;Z§y | | Object type
/\ identified1 bz’ o \\{\xor} soclared Zr E;.?? strong
P N — "
Do | [e 50 oy | | v ee | [Moo
%E;r':itai\flilgs 1 pa"“ci:fa(‘;?f I_{disjoint, complete} ! |decareden !|centtes
External Internal Attribute |

identification identification

declared on

participptes
in o {disjoint}$ Zﬁ
= {xor}

Qualified
identification

Weak Single 0..1declared as

identification

identification |5 participates in

1.5 —
identified by

* A Weak identification is a combination of one or more Attributive property of the Weak object type it identifies
together with the Identification constraint of the Object type it has a Relationship with
and this Object type is disjoint with the Weak object type.
* The Single identification has a Mandatory constraint on the participating Role and the Relationship that
Role is contained in has a 1:1 Cardinality constraint declared on it.
* Qualified identification and External identification are declared on only Attributive property.
* A Qualified relationship participates in a Qualified identification only if the Cardinality constraint is 1.

28 /34

Validating mappings

Formalised metamodel (section), highlighted for step 5

V(x, y)(Contains(x, y) — Relationship(x) A Role(y))

V(x)322y(Contains(x, y))

V(x)(Role(x) — 3(y)(Contains(y, x)))

V(x, y,z)(Contains(x, y) A Contains(z,y) — (x = z))

V(x,y,z)(RolePlaying(x, y, z) — Role(x) A CardinalityConstraint(y) A EntityType(z))

V(x)(Role(x) — 3(y, z)(RolePlaying(x, y, z)))

V(x,y,z,v,w)(RolePlaying(x,y, z) A RolePlaying(x,v,w) — (y = v) A (z = w))

V(x,y,z,v,w)(RolePlaying(x,y, z) A RolePlaying(v,y,w) = (x = v) A (z = w))

V(x)(CardinalityConstraint(x) — 3(y)(MinimumCardinality(x,y) A Integer(y)))

V(x)(CardinalityConstraint(x) — J(y)(MaximumCardinality(x,y) A Integer(y)))

V(x, y)(Identifies(x,y) — (IdentificationConstraint(x) A ObjectType(y)))

V(x)(IdentificationConstraint(x) — J(y)(Identifies(x,y)))

V(x,y,z)((Identifies(x,y) A Identifies(x,z)) — (y = z))

V(x)(0bjectType(x) — 3(y)(Identifies(y, x)))

V(x, y,z)((DeclaredOn(x, y) A DeclaredOn(x, z) A IdentificationConstraint(x) A (—(y =
(ValueProperty(y) <> —AttributiveProperty(z)))

V(x)(IdentificationConstraint(x) — J(y)(DeclaredOn(x,y)))

V(x, y)((DeclaredOn(x, y) A SingleIdentification(x)) — (Attribute(y) V ValueType(y)

V(x)(SingleIdentification(x) — 3(y)(DeclaredOn(x,y))

V(x,y,z)((SingleIdentification(x) A DeclaredOn(x, y) A DeclaredOn(x,z)) — (y = z))

29/34

Discussion and Conclusions

Outline

© Discussion and Conclusions

30/34

Discussion and Conclusions

Considerations

e Upfront ‘investment’, notably in designing and formalising the
metamodel
@ Extra work pays off:

e increased coverage of features

o higher precision of mappings

e approximations are explicit

e coordination of rules thanks to constraints in metamodel (cf.
plain dictionary)

@ Rules usable for both transformations and validation

@ Yet to be implemented and evaluated with actual models

31/34

Discussion and Conclusions

Conclusions

@ Metamodel-driven approach for model transformations and
inter-model assertions where the models are represented in
different languages: static structural, components of ER,
EER, UML v2.4.1, ORM, and ORM2

@ Uses formalised metamodel to direct a sequence of the
language transformations

@ Set of mapping, transformation, and approximation rules to
carry it out

e Transformations (conversions) and validation of inter-model
mappings

32/34

Discussion and Conclusions

References |

) & W & & =

Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and translation signatures in a
multi-model framework. Annals of Mathematics and Artificial Intelligence 63, 1-29 (2012)

Bollen, PW.L.: A formal ORM-to-UML mapping algorithm (2002),
http://arno.unimaas.nl/show.cgi?fid=46, research memo RM 02/016, Faculty of Economics and
Business Administration, University of Maastricht

Boyd, M., McBrien, P.: Comparing and transforming between data models via an intermediate hypergraph
data model. J. on Data Semantics IV, 69-109 (2005)

Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. Journal of Artificial
Intelligence Research 11, 199-240 (1999)

Keet, C.M.: Ontology-driven formal conceptual data modeling for biological data analysis. In: Elloumi, M.,
Zomaya, A.Y. (eds.) Biological Knowledge Discovery Handbook: Preprocessing, Mining and Postprocessing
of Biological Data, chap. 6, pp. 129-154. Wiley (2013)

Keet, C.M., Fillottrani, P.R.: Structural entities of an ontology-driven unifying metamodel for UML, EER,
and ORM2. In: Proc. of MEDI'13. LNCS, vol. 8216, pp. 188-199. Springer (2013), sept. 25-27, 2013,
Amantea, Calabria, Italy

Keet, C.M., Fillottrani, P.R.: Toward an ontology-driven unifying metamodel for UML class diagrams, EER,
and ORM2. In: Proc. of ER'13. LNCS, vol. 8217, pp. 313-326. Springer (2013), 11-13 Nov., 2013, Hong
Kong

Venable, J., Grundy, J.: Integrating and supporting Entity Relationship and Object Role Models. In: Proc.
of ER'95. LNCS, vol. 1021, pp. 318-328. Springer (1995)

33/34

http://arno.unimaas.nl/show.cgi?fid=46

Discussion and Conclusions

Thank you!

Questions?

34/34

	Motivation
	Approach
	Rules
	Validating mappings
	Discussion and Conclusions

