
On Verifying Reactive Rules Using Rewriting 

Logic 

Katerina Ksystra, Nikolaos Triantafyllou, and Petros Stefaneas 



Roadmap 

 Introduction 

 Reactive rules and motivation 

 Rewrite theory OTS 

 Reactive Rules and Rewrite theory OTS 

 Detecting termination – confluence properties 

 Verifying safety properties 

 Conclusions and Future Work 



Introduction 

3 

 Central idea 

 Framework for formally expressing reactive rules 

 based on Rewrite Theory  

 Why? 

 Formal analysis of reactive rule based systems 

 Verification of their behavior 

 Benefits 

 Ability to detect structure errors and  

 prove safety properties in the same framework 



Reactive Rules and Motivation 

 Production rules, “If condition do action” 

 Specify the execution of an action in case some 

conditions are satisfied 

 reaction to states changes 

 Event Condition Action (ECA) rules, “On event if 

condition do action” 

 A rule reacts to detected events  

 by evaluating a (set of) condition(s) and  

 by executing a reaction whenever the event happens and 

the condition(s) is true. 



Properties of interest 

5 

 Safety property:  

 a desirable property holds in all reachable states (i.e. is an 

invariant) of the rule-based system and is specific to the 

purpose of the specified application 

 Confluence:  

 whether the result of executing a set of triggered rules 

depends on the execution order of the rules or not (all state 

paths lead to the same final state) 

 Termination:  

 ensure that a set of rules will eventually terminate (i.e. reach a 

final state) and will not continue to trigger each other infinitely 

 



Formal Specification of Reactive Rules 

6 

 Some first steps to formalize Reactive rules using 

algebraic specification techniques were presented in:  

 Ksystra, K., Triantafyllou, N., Stefaneas, P.: On the Algebraic 

Semantics of Reactive Rules. 6th International Symposium, 

RuleML 2012, Springer, (2012)  

 Ksystra, K., Stefaneas, P., Frangos, P.: An Algebraic Framework 

for Modeling of Reactive Rule-Based Intelligent Agents. 

SOFSEM: Theory and Practice of Computer Science - 40th 

International Conference on Current Trends in Theory and 

Practice of Computer Science, LNCS, 407-418 (2014).  



Formal Specification of Reactive Rules 

7 

 In that work,  we proposed OTS/CafeOBJ method to 

verify safety properties about reactive rule-based 

systems 

 but cannot express naturally structure properties 

 In this paper we extend the previous approach by 

adopting the logical formalism of rewrite theory 

specifications 

 So that both safety and structure properties can be 

formally checked in the same framework 



CafeOBJ-Rewriting Logic Specification 

8 

 Algebraic specification language 

 executable by term rewriting 

 Supports both equational theory and rewrite theory 
specifications 

 State transitions are described in equations in the former and 
in rewriting rules in the latter. 

 Equational theory specification is used for interactive theorem 
proving  

 For rewrite theory specification CafeOBJ can conduct exhaustive 
searches 

 In a recent paper by CafeOBJ team, a way to theorem prove 
that rewrite theory specifications of OTSs have invariant 
properties is presented (combining the two approaches)! 



Production rules and rewrite rules-CafeOBJ 

9 

 In a rewrite theory, states are expressed as collections of 

observable values 

 Reactive rules can be formally defined as a set of rewrite 

theory specifications in CafeOBJ as follows: 

 A production rule of the form Ri = On Ci do Ai 

 where Ai denotes a variable assignment can be naturally 

transformed into the rewrite rule  

 ctrans [Ri] (V: v0) D => (V: v1) D if Ci = true . 

 The above rewrite rule states that the observable value V 

will become v1 if the condition of the rule is true.  



Production rules and rewrite rules-CafeOBJ 

10 

 When the result of action Ai is the assertion of the fact ki to 
the knowledge base, its definition is the following;  

 ctrans [assert ki] (knowledge: K) D =>  

  knowledge : (ki U K) D if Ci /in K . 

 knowledge is the observable value corresponding to the 
knowledge base (KB)  and it is defined as a set of boolean 
elements.  

 U is an operator for adding elements in a set  

 /in is an operator that returns true when an element belongs to a 
set, here the knowledge base 

 This rule states that the fact ki will be added to the KB if the 
condition of the rule holds 

 Similar is the definition when the action of the rule is retract or 
update the KB or another generic action  



ECA rules and rewrite rules-CafeOBJ 

 An Event Condition Action rule of the form Ri := On 

Ei if Ci do Ai, is defined in CafeOBJ terms as two 

transitions 

 The first one specifies the event Ei 

 the system after the detection of the event stores its “id” 

number in an special observable value called event-memory 

for remembering that event 

 ctrans [Ei] (event-memory: null) => (event-memory: 

i) if c-ei = true . 

 the value null of event-memory, denotes that no other event is 

detected at the pre state and c-ei is a boolean CafeOBJ term 

denoting the detection conditions for Ei. 



ECA rules and rewrite rules-CafeOBJ 

 The second transition rule specifies the action Ai 

 it defines that the system must respond to the detected event 

by performing the corresponding action 

 The triggering of the action as a response to the event is 

simply defined by: 

 adding the condition that in the pre state the event memory 

will contain the index of the occurred event 

 ctrans [ai] (event-memory: m) (oi: vi) => (event-

memory: null) (oi: vj) if Ci = true and (m = i) . 



ECA rules and rewrite rules-CafeOBJ 

 This ensures that only the guard of this transition rule 

will hold at the pre state and thus  

 this will be the only applicable transition for that state of the 

system 

 After the occurrence of the action, event-memory will 

become null again  

 denoting that the system is ready to detect another event 



Running example 

14 

 A company's e-commerce web site 

 (R1) If the Customer is Gold and his/her shipping cart is 

worth 2,000 or more then the discount is increased by 

10 points. 

 (R2) If the Customer is Platinum and his/her shipping cart 

is worth 1,000 or more then the discount is increased by 

15 points. 

 (R3) If the Customer is Gold and he is aged 60 or more 

he is promoted to the Platinum category 

 

 



In CafeOBJ terms; 

15 

 ctrans [gold] : (category: G) (value: V) (age: N) 

(discount: M) => (category: G) (value: V) (age: N) 

(discount: (M + 10)) if ((V >= 2000) and (G = 

gold)) . 

 ctrans [platinum] : (category: G) (value: V) (age: 

N)  (discount: M) => (category: G) (value: V) 

(age: N) (discount: (M + 15)) if ((V >= 1000) and 

(G = platinum)) . 

 ctrans [upgrade] : (category: G) (value: V) (age: 

N) (discount: M) => (category: platinum) (value: 

V) (age: N) (discount: M) if (G = gold) and (N >= 

60) .  



Detecting termination issues 

 A state s is terminating if it leads to a state where no rules can 
be applied (final state) 

 We define the following predicate 

 op terminates? : State -> Bool 

 terminates?(s) = s =(1,*)=>! (event-memory: M1) 

(value: V1) (o: N) 

 red terminates?(s) . 

 with the command red t ==> p CafeOBJ can traverse all the 
terms reachable from t wrt transitions in a breadth-first 
manner and find terms (called solutions) such that they are 
matched with p 

 By reducing terminates?, we basically ask CafeOBJ to find a 
final state reachable from the state s (that’s why ! is used at 
the end of ==>) 



Detecting termination issues 

17 

 If true is returned (together with a final state) it means 

that the state s is terminating;  

 if false is returned it means that in the state s, no 

transition can be applied; 

 the CafeOBJ reduction may not terminate, indicating that 
s is not terminating. 

 



Termination-example: 

18 

 Suppose we have the following state 
 op s : -> State . 

 eq s = (category: gold) (value: 500) (age: 50) 

(discount: 0) . 

 red terminates?(s) . 

 When we test this state, CafeOBJ returns false together 

with following message 
 ** No more possible transitions. 

 (false): Bool 

 which is reasonable since no transition can be applied 



Termination-example: 

19 

 eq s = (category: gold) (value: 2000) (age: 50) 

(discount: 0) 

 red terminates?(s) . 

 When we test the above case (where the gold rule can be 

applied on and on) the reduction of CafeOBJ does not halt 

indicating that this state is not terminating. 

 Having detected this issue we can add the constraint 

(discount: (M1 + 10) <= 100)) to the rule, since the discount 

cannot surpass this value. 

 When the same case is tested after adding the constraint, 

CafeOBJ finds the final state;  

 (category: gold) (value: 2000) (age: 50) (discount: 100) . 

 



Detecting confluence issues 

20 

 A rule program's state s is non-confluent if there exist two 
traces from this state that lead to distinct (final) states. 

 We define the following predicate: 

 op notConfulent? : State -> Bool 

 notConfluent?(s) =(2,*)=>! (event-memory: M1) (value: 

V1) (o: N) . 

 red notConfluent?(s) . 

 The above reduction i.e. asks CafeOBJ to search if it can find 
starting from an arbitrary state s two different final states of the 
system 

 if two such solutions are found it means that the state s is 
not confluent 

 if false is returned and one solution is found, the state is 
confluent 

 



Confluence-example 

 Consider the following state: 

 eq s = (category: gold) (value: 500) (age: 60) 

(discount: 0) 

 red notConfluent?(s) . 

 In this case where upgrade is the only applicable rule 

CafeOBJ returns false, as it finds one final state meaning 

that the state s is confluent. 



Confluence-example 

22 

 Let us consider the state which is defined by the 

following observable values;  

 the value of the items of the cart is equal to 2000 dollars,  

 the age of the customer is 60 years old and  

 his category is gold. 

 In this case:  

 the customer is eligible to being granted the gold 

discount and  

 being upgraded to the platinum category! 



Confluence-example 

23 

 This state is defined as follows in CafeOBJ terms: 

 eq s = (category: gold) (value: 2000) (age: 60) 

(discount: 0) 

 red notConfluent?(s) . 

 Indeed, when we test this case CafeOBJ returns true as it finds 

two solutions, denoting that s is not confluent, as we expected.  

 In particular, it returns; 

 ** Found [state 25] (category: platinum) (value: 

2000) (age: 60) 

 (discount: 90) 

 ** Found [state 27] (category: platinum) (value: 

2000) (age: 60) 

 (discount: 95) 



Confluence-example 

24 

 Then using the command show path id we can see 

the two transition paths that cause the problem (and 

then we can add constraints in the conditions of the 

rules to solve this issue, by letting for example the 

upgrade rule to be applied first).  



Proving safety properties 

25 

 The built-in CafeOBJ search predicate can also be used to 

prove safety properties 

 For the verification of such properties model checking 

and/or theorem proving can be used 

 We will demonstrate through the running example how 

to use theorem proving in our framework 



Safety property-example 

 For our rule based system an invariant safety property 

could be the following;  

 A customer cannot belong to the platinum category if 

his/her age is less than 60 years. 

 This property is expressed in CafeOBJ terms as; 
 op isSafe : State -> Bool . 

 eq isSafe((category: G) (value: V) (age: N) 

(discount: M)) = not ((G == platinum) and (N < 

60)) . 

 Then the proof is done by induction on the number of transition 

rules of the system 



Safety property-example 

27 

 Starting from the initial state of our system 

 eq init = (category: gold) (value: 2000) 

(age: 50) (discount: 0) . 

 and using the above command: 

 red check(true, isSafe(init)) . 

 the base case is successfully discharged 

 operator check takes as input a conjunction of lemmas 

and/or induction hypotheses and a formula to prove and 

returns true if the proof is successful 

 Ogata, K., Futatsugi, K.: Theorem Proving Based on Proof Scores for 

Rewrite Theory Specifications of OTSs 

 



Safety property-example 

28 

 The inductive step consists of checking whether from an 

arbitrary state, say s, we can reach in one step a state, say 

s', where the desired property does not hold 

 When false is returned  

 it means that CafeOBJ was unable to find a state s‘ such that 

the safety property holds in s and it does not hold in s’ 

 If a solution is found, i.e. the above term is reduced to true,  

 either the safety property is not preserved by the inductive 

step or we must provide additional input to the CafeOBJ 

machine (case analysis or lemma discovery) 



Safety property-example 

29 

 Consider the inductive step where the gold transition rule 

is applied to s; 
 eq s = (category: gold) (value: 2000) (age: N) 

(discount: 0)  

 Using the above reduction 
 red s =(*, 1)=>+ s' suchThat(not 

check(isSafe(s),isSafe(s'))) . 

 CafeOBJ returns false, and thus this induction case is 
discharged. 

 



Safety property-example 

 Consider the case where the platinum rule is applied; 
 eq s = (category: platinum) (value: 2000) (age: N) 

(discount: 0) . 

 red s =(*, 1)=>+ s' suchThat (not 

check(isSafe(s),isSafe(s'))) . 

 CafeOBJ returns false for this case, thus this induction 

case is aso discharged. 

 Following the same methodology the induction case for the 

upgrade rule was discharged as well, and thus the proof 

concludes. 



Conclusions 

 We have presented rewrite theory semantics for reactive 

rules 

 Goal: 

 Detect termination and confluence errors  

 Verify safety properties of reactive rule based systems 

 in the same framework 

 

 



Future Work 

32 

 Future plans: 

 Conduct more case studies using the proposed 

methodology 

 Develop a tool for translating reactive to rewrite rules 

 Extend the framework 

 To support reasoning about ontologies 

 Reasoning about reactive rules in combination with ontologies  

 Verification of Rule engine implementation 

 Using design by contract methods 

 



Thank you! 

33 

 

 

 

Questions? 


